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EXECUTIVE SUMMARY

PERFORMANCE EVALUATION OF TRAFFIC
SENSING AND CONTROL DEVICES

Introduction

High quality sensing and control systems are essential for

providing efficient signalized arterial operations. INDOT operates

over 2600 traffic signal controllers, approximately 2000 of which use

some form of vehicle detection. The private sector continues to

develop innovative sensing technologies that may potentially benefit

Indiana motorists and taxpayers by improving system efficiency and

lowering installation and maintenance costs. However, the accep-

tance of new sensing technology requires careful evaluation because

to ensure that they provide robust performance 24 hours a day, 365

days a year, with minimal impact on maintenance resources.

This project was initiated with the objective of assisting INDOT

with evaluating new sensing and control technology. As the

project progressed, there were several opportunities to partner

with colleagues at other agencies, institutions, and businesses to

leverage collective resources and accelerate implementation on a

national scale.

Findings

This study developed a technical protocol for evaluating vehicle

detector performance and applied those techniques to both video

detection (in partnership with Texas) and wireless magnetometers.

Based on experiences in designing the detector test bed,

recommendations are given for stop bar detection zone design

using wireless magnetometers. Additional results include a

detailed study of the inductive loop detector sensing range for

several loop geometries, and an innovative method for interrogat-

ing NTCIP-compliant traffic signal systems to allow quality

control on signal timing plan implementation. Since this project

spanned several years, interim results were documented in the

professional literature as they became available. This technical

report summarizes those results and provides references to the

published papers.

A methodology for evaluating vehicle detectors was developed

in a collaborative effort with Texas Transportation Institute in an

effort to broaden national support for better performing vehicle

detector specifications such as those adopted by INDOT. This

research effort helped define how detection technology should be

evaluated (and promoted developing a national consensus).

This testing methodology was directly applied to evaluation of

wireless magnetometers. The evaluation concluded found that

these detectors met the standards of ITM 934, with the stipulation

that detection zone designs must be carefully designed. During this

project several lessons were learned regarding the detection zone

configuration during an iterative design and testing process

carried out between the research team and staff from Sensys.

Recommendations for detector spacing were developed as a result

of this process.

Additional research included an investigation into the sensitiv-

ity of loop detectors of different geometries. Although loop

detectors have been in use since the 1920s, there has been

practically no published research documenting the comparative

sensitivity of alternative loop designs with empirical data. We have

carried out a study under controlled conditions for four common

loop designs that measured the response of the loops to a

simulated vehicle undercarriage at different vertical and horizontal

locations relative to the loop. We observed no differences among

the four geometries regarding the spread of the detection area into

adjacent lanes. It was also found that a certain loop geometry that

was expected to have enhanced sensitivity in the loop center

actually exhibited less sensitivity over that region.

Finally, another topic that the research team was asked to

investigate was the possibility of developing a methodology for

checking traffic signal controller settings for consistency across

intersections. The research team worked with an industry partner

to develop a tool that would populate a database table with the

signal controller settings by investigating all of the nodes of the

NTCIP tree by executing a walk of the tree using the standard

SNMP protocol.

Implementation Recommendations

The results of this project have had a positive impact on agency

operations prior to the release of the final report. INDOT has

currently adopted the vehicle detector evaluation methodology as

ITM No., 934-08P. The evaluation of wireless magnetometers led

to the addition of this new detector technology to the approved

materials list, which will potentially reduce detector installation

and maintenance costs, as well as potentially allow enhanced

information to be collected from signal systems. The magnet-

ometers have been used to actuate the traffic signal at the SPR-

3206 test intersection since 2009, and may open the way for the

development of an improved vehicle detection standard and lead

to more effective methods of constructing new signalized

intersections.
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CHAPTER 1. OVERVIEW OF RESEARCH
RESULTS

1.1. Introduction

This is the final report for JTRP project SPR-3206,
‘‘Performance Evaluation of Traffic Sensing and
Control Devices.’’ This project began in January 2008
and concluded in October 2011. The project benefited
from extensive in-kind vendor support. In addition, the
Texas Transportation Institute provided funds that
provided an opportunity to collaborate with colleagues
in Texas to develop consensus on methods for assessing
vehicle detection technology accuracy and develop
consensus on target performance thresholds.

To facilitate early dissemination of the research
findings, several intermediate technical papers were
prepared and published or submitted to peer-reviewed
journals:

1. Middleton, D., R. Longmire, D.M. Bullock, and J.R.
Sturdevant, ‘‘A Proposed Specification Concept for
Vehicle Detection.’’ In Transportation Research Record
No. 2128, TRB, National Research Council, Washington,
DC, pp.161–171, 2009.

2. Day, C.M., Premachandra, H., Brennan, T.M.,
Sturdevant, J.R., and Bullock, D.M. ‘‘Operational
Evaluation of Wireless Magnetometer Vehicle Detectors
at a Signalized Intersection.’’ In Transportation Research
Record No. 2192, Transportation Research Board of the
National Academies, Washington, DC, pp. 11–23, 2010.

3. Day, C.M., Brennan, T.M., Harding, M.L.,
Premachandra, H., Jacobs, A., Bullock, D.M.,
Krogmeier, J.V., and Sturdevant J.R. ‘‘Three
Dimensional Mapping of Inductive Loop Sensitivity with
Field Measurement.’’ In Transportation Research Record
No. 2128, Transportation Research Board of the
National Academies, Washington, D.C., pp. 35–47, 2009.

4. Technical paper on use of NTCIP communication
protocol for implementing quality control and consis-
tency checks of corridor traffic signal controller para-
meter configuration. At time of report submission, this
paper was in production stage and scheduled to be
completed by the TRB July 31, 2011 deadline. This paper
will be distributed to the SAC in early August.

This report is structured as an executive summary in
which the major findings of the above papers are
outlined. The reader is referred to the above documents
for additional details of the work. Further information
on each paper is provided in Appendix A.

1.2. Objective

This objective of this project is to build upon past
efforts by INDOT to improve the state of the practice
for testing and operating traffic sensing and control
devices. High quality traffic signal detection is essential
to properly operate actuated signal phases and collect
high quality traffic data to facilitate effective manage-
ment of technician and engineering resources
(1,2,3,4,5,6,7,8,9,10,11,12,13). INDOT operates over
2600 traffic signal controllers, approximately 2000 of
which use some form of vehicle detection. New

innovations from the private sector offer potential cost
savings from the promise of cheaper installation and
reduced maintenance cost. However, these cost savings
must be balanced with an evaluation of the detector
performance to ensure that the technology performs as
well as existing detectors, but also to ensure that the
control devices deliver the promised performance.

Vehicle detection at traffic signals is a detector
application where little tolerance for failure is accep-
table. For actuated phase operation, failure to detect a
vehicle waiting to receive the right-of-way can lead to
excessive delay or encourage the waiting motorist to
make unsafe maneuvers. Excessive numbers of false
detections leads to the less severe but nonetheless
unacceptable scenario where time is wasted serving
green time to movements when no demand is present
while other movements have vehicles waiting. Past
experiences by INDOT have suggested that extensive
testing in the freeway domain is not directly applicable
to stop bar presence detection. We have proposed a new
methodology for evaluating detectors that is applicable
to the domain of intersection operations. This metho-
dology was developed in partnership with the Texas
Transportation Institute. We have directly applied that
methodology in the evaluation of wireless magnet-
ometers. These findings are described in Chapter 2 and
Chapter 3.

Two additional research efforts were carried out
during SPR 3206. The impact of loop detector
geometry on the sensitivity of detection zones to the
presences of vehicles with varying vertical clearance was
measured in the field with a test apparatus simulating
the presence of a vehicle undercarriage under precise
conditions. That research helped substantiate practi-
tioner experience with empirical data. Another impor-
tant aspect of operations that is coupled with detector
evaluation is the programming of actuated traffic signal
controllers. With literally tens of thousands of change-
able parameters, there are numerous opportunities for
errors to accumulate during the programming process.
This report describes a methodology for checking the
consistency of traffic signal settings with an essentially
automated process. These findings are described in
Chapter 4 and Chapter 5.

1.3. Summary of Principle Findings

A methodology for evaluating vehicle detectors was
developed in a collaborative effort with Texas (Dan
Middleton and Ryan Longmire) in an effort to broaden
national support for the ITM 9341 drafted by INDOT
in 2008. The methodology is summarized in Chapter 2,
and a reprint of the paper is included for project
reviewers in Appendix A. This paper is important for
defining (and developing national consensus) on how
detection technology should be evaluated. The paper is
structured such that there is close agreement on the
assessment techniques, but somewhat diverging agree-
ment on the thresholds for success. To address those

1http://www.in.gov/indot/div/M&T/itm/pubs/934_testing.pdf

Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2011/08 1



diverging views, the paper contains both the values
obtained from video detection as well as those proposed
by INDOT.

This testing methodology was directly applied to
evaluation of wireless magnetometers. This evaluation
was carried out as a collaborative effort with the
manufacturer (Sensys Networks, Inc). The evaluation
concluded found that these detectors met the standards
of ITM 934, with the stipulation that detection zone
designs must be carefully designed. Naturally, this is
true of any detector type. However, during this project
several lessons were learned regarding the detection
zone configuration during an iterative design and testing
process carried out between the research team and staff
from Sensys. Recommendations for detector spacing
were developed as a result of this process. The results are
summarized in Chapter 3, and a reprint of the paper is
included for project reviewers in Appendix B.

Additional research carried out under SPR 3206
included an investigation into the sensitivity of loop
detectors of different geometries. Although loop
detectors have been in use since the 1920s, there has
been practically no published research documenting the
comparative sensitivity of alternative loop designs with
empirical data. We have carried out a study under

controlled conditions for four common loop designs
that measured the response of the loops to a simulated
vehicle undercarriage at different vertical and horizon-
tal locations relative to the loop. We observed no
differences among the four geometries regarding the
spread of the detection area into adjacent lanes. It was
also found that a certain loop geometry that was
expected to have enhanced sensitivity in the loop center
actually exhibited less sensitivity over that region.
Additional details are provided in Chapter 4, and a
reprint of the paper is included for project reviewers in
Appendix C.

Finally, another topic that the research team was
asked to investigate was the possibility of developing a

TABLE 1.1
Comparison of 10-year lifetime cost of detection at an intersection
of two 2-lane roads with both advance detection on all approaches,
and stop bar detection on eight lanes at the intersection. Note:

these costs are estimated by local distributor for Sensys
Networks, Inc.

Installation Cost $57,757 $89,000

Maintenance Cost (10 Year) $3,650 $2,000

Replacement Cost (10 Year) $720 $10,920

Total cost of Ownership (10 Years) $62,127 $101,920

Figure 1.1 Detector configuration used to estimate costs in Table 1.1

2 Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2011/08



methodology for checking traffic signal controller
settings for consistency across intersections. The
research team worked in partnership with developers
at Econolite Control Products to develop a tool that
would populate a database table with the signal
controller settings by investigating all of the nodes of
the NTCIP tree by executing a walk of the tree using

the standard SNMP protocol. Results from this study
are provided in Chapter 5.

1.4. Estimated Benefits

Table 1.1 shows a comparison of 10-year lifetime
costs for wireless magnetometers versus inductive loops

Figure 1.2 Signalized arterial (US 36 in Indianapolis, IN) used to conduct probe vehicle re-identification system (map obtained
from www.bing.com). Figure reproduced from Remias et al. (14). * Indicates there is no magnetometer array at these intersections.

Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2011/08 3



for detection at an intersection. The intersection
configuration used to estimate these costs is shown in
Figure 1.1. This design contains four sets of advance
detectors and eight lanes of stop bar detection. For this
detector configuration, a savings of approximately
$40,000 over 10 years is realized by using wireless
magnetometers. Much of the savings can be attributed
to the use of wireless connectivity for the detection
rather than the conduit, handholds, and detector
housing required for inductive loops. These estimated
costs are current as of 2011. Because wireless magnet-
ometers are a relatively new technology, it is possible to
speculate that as wireless magnetometer sales volumes
grow, the costs of components may decrease further.
The results of this report find that, with appropriate
detection zone specification, wireless magnetometers
can deliver vehicle detection performance of similar
quality to inductive loops.

1.5. Closing Comments

Despite nearly 350,000 signalized intersections in the
United States, technology innovation in the traffic
signal field has been somewhat sluggish over the past 50
years. This is due in large part to 50 states having 50

different standards, not to mention larger local agencies
such as Los Angeles, Chicago, etc. add further
fragmentation. Perhaps surprisingly, there has been
very little national consensus on objective sensor
testing. Indiana has emerged as a national leader in
the evaluation9 of traffic signal detection technology
and application of that technology for traffic signal
operations and performance measures.

Over the past five years, INDOT’s investment in this
area and efforts to disseminate research findings has
resulted in six national best paper awards, four from
TRB (1,5,9,19), one from ASCE (18), and one from
ITE (2). Although not all of those papers were the
result of JTRP projects, they all benefited substantially
from the instrumented intersections and corridors that
INDOT has invested in so that ‘‘INDOT does not have
to model what it can measure.’’

Lastly, Indiana is emerging as national leader in the
area of traffic detection and traffic signal system
performance measures. The noteworthy aspect of this
is the opportunity for industrial partner to help fund
significant infrastructure upgrades to the US 36 corridor
(Figure 1.2) and labor required to conduct an evalua-
tion of emerging technology to collect probe data travel
time along the segments shown in Figure 1.3 (14).

Figure 1.3 Travel time segments to be obtained from Sensys installation on US 36. Figure reproduced from Remias et al. (14)
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CHAPTER 2. SPECIFICATION FOR DETECTOR
PERFORMANCE

2.1. Objective

To develop a selection of vehicle detector types that
are to be considered acceptable for procurement and
installation, it is necessary to establish a standard
method for judging whether a detector type should be
accepted. The concept of a performance specification
for vehicle detectors was pursued by research that was
jointly pursued by Indiana using resources available
through SPR-3206, and by individuals at the Texas
Transportation Institute. The findings of this research
were published in 2009 in Transportation Research
Record (15). This research paper is summarized in this
chapter, and a reprint is provided for project reviewers
in Appendix A.

2.2. Motivation

Vehicle detectors are used for several purposes. The
most common use is to actuate a traffic signal to
provide a call for an actuated vehicle phase, and to
extend the green time of that phase based upon vehicle
presence and/or volume-density timing logic.
Historically, inductive loop detectors (ILDs) have been
the most widely used technology for these applications.
In recent years, new technologies that have arisen that
promise various benefits such as easier installation and
maintenance. These detection systems are usually
compared with inductive loop detectors to establish a
means of comparing performance. Writing a perfor-
mance specification for new detection systems based on
ILD performance (for example, specifying that the new
system should meet or exceed the capabilities of ILDs)
fails to take into account differences between detection
technologies. More detailed performance criteria are
needed to establish a fair set of criteria for acceptance.

Detector performance may be conceptually defined
as having two dimensions, precision and accuracy.
These concepts are illustrated in Figure 2.1, which
shows arrows striking a target under various conditions
of precision and accuracy. In Figure 2.1a, we see the
obviously undesirable condition of an imprecise and
inaccurate system. Figure 2.1b illustrates the perfor-
mance of a system having accuracy but lacking
precision; although many of the arrows are generally
in the right location, the procedure is inefficient.
Likewise, in Figure 2.1c, where the system is precise
but lacks accuracy, the results of our efforts are
unfavorable. Figure 2.1d illustrates the preferred situa-
tion where the system has both accuracy and precision.

2.3. Findings

Two sets of performance criteria for detector accep-
tance are proposed, based on tolerances for applications
specific to traffic signal actuation and green time
extension. The first set of criteria concerns detector
precision, and is based on the concept of detector

latency, or the difference in time between when the
detection zone enters a new occupancy state, and when
the detection system reports that it occurs. Activation
latency is the time difference for detecting a vehicle
entering the detection zone, while termination latency is
the time difference for returning to the unoccupied state
when the vehicle leaves the detection zone. Activation
and termination latency might have different characte-
ristics depending on the detection technology.

The detector latency acceptance criteria specified by
INDOT is summarized by Table 2.1. Detector precision
is defined as tolerances for both the spatial and temporal
edges of the detection zone. This table contains
alternative tolerances for ‘‘low performance’’ and ‘‘high
performance’’ operations depending on the criticality of
the detector function. These are defined in terms of the
85th and 100th percentiles of observed latencies, which
accounts for the fact that detector performance may tend
to vary stochastically. In addition to these criteria, a
maximum acceptable tolerance for false calls is proposed.

The second set of criteria is based on whether
accurate vehicle calls are produced by the detection
technology. The frequency of undesirable operational
conditions is considered, namely the number of missed
calls and false calls. A missed call is defined as any time
when the detector fails to detect a vehicle, while a false
call occurs when the detector reports a vehicle detection
while a vehicle is not present.

Table 2.2 contains INDOT’s specified acceptance
criteria as the maximum number of missed and false
calls that are within acceptable limits for operation

Figure 2.1 Precision and accuracy. (a) Inaccurate and
imprecise. (b) Accurate but imprecise. (c) Precise but
inaccurate. (d) Accurate and precise
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within any 24-hour or 1-hour time period. The number
of missed calls is considered separately for red/amber
and green intervals for actuated signal operations.

In addition to INDOT’s specifications, research using
a video detection system in Texas led to an alternative
set of acceptance criteria based on the expected
capability of a well-calibrated video detection system.
These are described in more detail in Appendix A.

2.4. Implementation of Results

The findings of this research have been used by
INDOT to define detector performance acceptance
criteria to include a detector type on the approved
materials list. The performance criteria were directly
applied to the evaluation of wireless magnetometers
during SPR-3206, which is described in the next
chapter.

CHAPTER 3. OPERATIONAL EVALUATION OF
WIRELESS MAGNETOMETERS

3.1. Objective

Wireless magnetometers are a minimally intrusive
vehicle detection technology which contains a compact
magnetic sensor and a battery power supply contained

within an isolated unit. This unit is installed in the
pavement to establish a detection zone, and wireless
communications are used to transmit the detector state
for use in signal control or other applications. In this
research project, our objective was to determine
whether this vehicle technology could be effectively
used for the control of actuated phases at a traffic
signal. An evaluation was conducted in 2008–2009,
during which several lessons were learned regarding
detection zone design. The findings of this research
were published in 2010 in Transportation Research
Record (16). This research paper is summarized in this
chapter, and a reprint is provided for project reviewers
in Appendix B. Additional material is included here
regarding detection zone design and vehicle count
performance.

3.2. Motivation

Inductive loop detectors (ILD) have been the most
widely method of vehicle detection since their invention
in the 1920s, because of their high performance
reliability. However, ILD installation can be rather
expensive, especially for advance detection, because of
the need to install conduit to connect the loops back to
the cabinet. While pave-over loops are a feasible option
for unconstructed intersections, most loops are saw-cut.
Saw-cut ILDs cannot be used for vehicle detection on
areas such as bridge decks where pavement cuts cannot
be made. Saw-cut ILDs are susceptible to failure,
particularly if they are not well-sealed; gradual pave-
ment damage caused by temperature variations and
pavement loading also damages loops over time. The
installation and maintenance of loops requires lane
closure and, consequentially, delay to traffic.

Because of the costs and disadvantages associated
with ILDs, INDOT has an interest in evaluating the
performance of new detector technologies for possible
inclusion as approved materials in intersection designs
or improvements. Compact wireless magnetometers are
a promising new detection technology offering several
advantages. Because they are wireless and battery-
powered, there is no need for installation of conduit to

TABLE 2.2
Acceptance criteria (per detection zone) defined by Indiana

Department of Transportation ITM No. 934-08P. Table
reproduced from Middleton et al. (15)

Test Criterion

Performance During

Amber and Red

Interval

Performance

During

Green Interval

Number of Missed Calls

(Nmc24) in 24 hrs

0 #10

Number of Missed Calls

(Nmc01) in 1 hr

#0 #10

Number of False Calls (Nfc)

in 24 hours

#20

Number of False Calls (Nfc)

in 24 hours

#20

TABLE 2.1
Parameters for measuring detector performance (per respective detection zone) defined by Indiana Department of Transportation ITM

No. 934-08P. Table reproduced from Middleton et al. (15)

Test Parameter

Low Performance Standard Performance

During Amber and

Red Interval

During Green

Interval

During Amber and

Red Interval

During Green

Interval

Activation Position, Upstream Tolerance (Au-A) #6.0ft #6.0ft #6.0ft #6.0ft

Activation Position, Downstream Tolerance (A-Ad) #6.0ft #6.0ft #6.0ft #6.0ft

Termination Position, Upstream Tolerance (Tu-T) #6.0ft #6.0ft #6.0ft #6.0ft

Termination Position, Downstream Tolerance (T-Td) #6.0ft #6.0ft #6.0ft #6.0ft

Activation Response Time, Typical (Ra85%) #2 sec #1 sec #1 sec #100 ms

Activation Response Time, Maximum (Ra100%) #10.0 sec #5.0 sec #5.0 sec #1.0 sec

Termination Response Time, Typical (Rt85%) #2 sec #1 sec #1 sec #100 ms

Termination Response Time, Maximum (Rt100%) #10.0 sec #5.0 sec #5.0 sec #1.0 sec

False Call Duration (Fd) #5.0 sec #5.0 sec #500 ms #500 ms
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link the detectors to the cabinet. The small form factor
of the detectors means that installation consists of a
single coring operation, as opposed to the lengthy saw
cuts typically required for ILDs. Installation requires
less lane closure time than cutting new ILDs in the
pavement, or installing and aiming (or re-aiming) video
cameras on mast arms above the intersection.
Photographs of a wireless magnetometer installation
are shown in Figure 3.1.

Figure 3.2 shows a diagram of magnetometer instal-
lation at the test site. The components of the detection
system are also explained in this diagram. The
magnetometers are installed in the center of the lane
in this test installation. To send the information back to
the cabinet, radio frequency (RF) repeaters are installed

on the roadside to amplify the signal. The access point is
a device that collects the signals and transfers the
information to the equipment in the cabinet. The access
points can be installed on poles located adjacent to the
street, eliminating the need for lane closures during that
stage of the installation process. Example access point
locations are shown in Figure 3.2.

In 2003, a prototype wireless magnetometer detec-
tion system was developed at the University of
California Berkeley, which was then commercialized
by Sensys Networks, Inc. Prior to the commencement
of SPR-3206 in 2008, there had not yet been a rigorous,
independent evaluation of Sensys wireless magnet-
ometer performance for the purpose of vehicle presence
detection at the stop bar of an intersection.

Figure 3.1 Wireless magnetometer installation. (a) Work zone set-up. (b) Drilling core for magnetometer. (c) Eliminating
moisture in core void. (d) Placement of magnetometer. (e) Filling core void with epoxy. (f) Completed magnetometer installation
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3.3. Findings

A test bed for the evaluation was constructed in 2008 at
the intersection of SR 37 and Pleasant St. in Noblesville,
IN, as shown in Figure 3.2. This test bed includes both
wireless magnetometers and ILDs within the same
detection zone, while a video camera was used to obtain
a record of vehicle presence. Two detection zones were
installed. Discrepancies between the ILDs and the

magnetometers were reconciled by visual inspection.
Initial evaluations of the detection zone area led to
several amendments to the initial design that are described
later in this chapter. Full-scale detector evaluation was
delayed by road construction, during which time project
resources were used to define the performance acceptance
criteria described in the previous chapter. Data collection
for the evaluation took place in May-June 2009. Over 240
hours of data were included in the evaluation.

Figure 3.2 Intersection of detector evaluation test bed at SR 37 and Pleasant St., showing the locations of wireless
magnetometers and access points. Figure reproduced from Day et al. (16)
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In summary, the wireless magnetometers were found
to operate within the accepted performance criteria
defined in Table 2.1 and Table 2.2. The number of
missed calls was similar to ILDs; a disproportionate
number of undetected vehicles were motorcycles (with
similar performance between both ILDs and wireless
magnetometers). The magnetometers were found to
produce slightly more false calls than inductive loops.

Magnetometer detection latency was found to be
acceptable. The magnetometers performed well within
the acceptance criteria for presence detection during the
red/yellow interval. As for performance during the
green interval, the magnetometers achieved acceptable
performance for activation latency, which is the more
critical aspect of latency for green extension. The
magnetometers had average termination latencies
slightly greater than the acceptance threshold.

In addition to these acceptance criteria, the perfor-
mance of wireless magnetometers for vehicle counts was
also evaluated. Magnetometers were installed in the
center of the two setback ILDs located 405 ft upstream
of the southbound approach of SR 37 and Pleasant St
(one magnetometer per lane as shown in Figure 3.2).
Plots of the cumulative counts over 48 hours from ILDs
and wireless magnetometers are shown in Figure 3.3.
The count was found to be in close agreement.
Consequently, the difference in the counts varied with
the traffic volume, but was less than 4% for an entire
24-hour period.

The minor differences in the counts are more likely to
be due to the fact that the loops were ‘‘tied together’’ to
form one detection zone spanning two lanes laterally,
whereas the Sensys detectors provided individual
counts per lane. ILD detection zones stretching across

adjacent lanes typically under-count vehicles because if
one vehicle enters lane A before while a vehicle is
currently in lane B, the detection state does not get a
chance to transition to an ‘‘OFF’’ state that would
indicate a gap between vehicles.

Proper detection zone design was found to be
important. During this project, several lessons were
learned regarding detection zone design, because of the
limited prior knowledge regarding the use of wireless
magnetometers for stop bar detection. The initial
designs exhibited rather poor performance because
they did not adequately cover the desired detection
zone area. After revising the design, the performance
was greatly improved. Based on these experiences,
recommendations were given for detection zone design,
as shown in Figure 3.4. Additional details regarding the
detection zone design are included in Section 3.4.

3.4. Implementation of Findings

Wireless magnetometers have been used to control
phase actuation and green extension for the north-
bound and southbound left turn phases at SR 37 and
Pleasant St. since June 2009. Following the perfor-
mance evaluation, the Sensys wireless magnetometer
was subsequently added to the approved materials list.
INDOT is currently working on developing a new
standard specification for intersection detection that
incorporates this type of detector.

3.5. Detection Zone Design Recommendations

Figure 3.5 explains the fundamental difference
between magnetometer and ILD response to vehicles.

Figure 3.3 Cumulative counts over 48 hours from Sensys detectors and inductive loops. Data is from Feb. 28 and Mar. 1, 2009
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The graphs show the response of the detector types
while a vehicle is moving across the detector. An
inductive loop (Figure 3.5a) has a rather symmetrical
response curve, and the magnitude of the change of
inductance is always a positive number. In contrast, the
response from a magnetometer (Figure 3.5b) has a
characteristically unsymmetrical shape, and contains
places where the magnitude of the response crosses the
‘‘zero’’ line and momentarily becomes negative. When
the vehicle is positioned at a particular location, it can
become invisible to this single magnetometer when the
response curve is close to the zero crossing points. This
was found to be a problem when using the magnet-
ometers for presence detection, because some vehicles
would stop in the ‘‘blind spot’’ of the individual detector
and become undetected. Placing two detectors relatively
close together (8 ft spacing was used in the SR 37
testbed, as shown in Figure 3.6) successfully eliminated

this problem at the test site. Therefore, for the purpose
of measuring vehicle presence, it is recommended to
layer multiple sensors to eliminate blind spots in stop
bar detection zones, as shown in Figure 3.4c.

Figure 3.6 shows two detection zone designs that
were tested during the course of this research. The
original detector design concept is shown in
Figure 3.6a, where a single magnetometer was included
at the center of each loop. This configuration was
found to be inadequate because of the existence of blind
spots. The detector configuration was subsequently
changed to the setup shown in Figure 3.6b, which
provides some overlapping magnetometer detection
close to the stop bar.

Figure 3.7 shows the durations of potential false calls
(Figure 3.7a) and missed calls (Figure 3.7b) from 24
hours of operation in the southbound left turn at SR 37
and Pleasant St. under the original design (shown in

Figure 3.4 Detection zone designs of various lengths (not to scale). Figure adapted from Day et al. (16). (a) Three ILDs
forming a 36 ft zone. (b) Four ILDs forming a 51 ft zone. (c) Recommended installation of wireless magnetometers for a 48 ft
detection zone
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Figure 3.6a). Each line in these plots represents the
duration of a single discrepancy between the ILD and
the magnetometer occupancy states reported to the
signal controller. The number of discrepancies is greatly
reduced after detection zone was redesigned (shown in
Figure 3.6b), as shown in Figure 3.8. There are
considerably fewer false calls (Figure 3.8a), while there
are practically no missed calls (Figure 3.8b). These
results show that detection zone design is critical, and
also that effective performance can be obtained from
only two overlapping two magnetometers.

Motorcycle detection was a challenge for magnet-
ometers, which is similar to the performance of other

detection systems. For example, most ILDs do not
detect motorcycles that are stopped in the middle of the
lane, while they do detect motorcycles when their
wheels are parked on the loop edges. In contrast, using
wireless magnetometers in the middle of the lane path
tends to miss motorcycles that do not stop in the middle
of the lane. These problems might be alleviated by
pavement marking to show motorcyclists where to stop
to actuate the signal. Another potential solution might
be to include perhaps two detectors next to each other
laterally close to the end of the loop, but some care
should be taken to avoid detecting vehicles in the
adjacent lane.

Figure 3.5 Comparison of example typical detector response for an ILD and a magnetometer. The magnetometer data is
obtained from a conventional magnetometer. Figure reproduced from Day et al. (16). (a) Typical ILD response curve. (b) Typical
magnetometer response curve
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Figure 3.6 Testbed geometry and detector placement for left turn lanes. Figure reproduced from Day et al. (16). (a) Original
NBLT installation. (b) NBLT installation modified on March 25, 2009 by retiring sensors M1A and M2A and adding sensors M0,
M1B, and M2B
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Figure 3.7 Discrepancy results from February 26, 2009 field test (initial installation). (a) Potential false calls (L0M1
discrepancies) from February 26, 2009. (b) Potential missed calls (L1M0 discrepancies) from February 26, 2009
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Figure 3.8 Discrepancy results from May 28, 2009 field test (revised detection zone). (a) Potential false calls (L0M1
discrepancies) from May 28, 2009. (b) Potential missed calls (L1M0 discrepancies) from May 28, 2009
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CHAPTER 4. THREE-DIMENSIONAL MAPPING
OF LOOP DETECTOR SENSITIVITY

4.1. Objective

Despite their use for over 80 years as the de facto
standard method of vehicle detection, there is only a
limited amount of literature regarding the responsive-
ness of alternative loop detector designs. Existing
studies do not provide a comparison of the perfor-
mance of alternative loop geometries. During the spring
of 2008, research to characterize ILD performance was
conducted while the testbed for magnetometer evalua-
tion (described in the previous chapter) was under
development. The findings of this research were
published in 2010 in Transportation Research Record
(17). This research paper is summarized in this chapter,
and a reprint is provided for project reviewers in
Appendix C.

4.2. Motivation

There is very little detailed empirical material
available to traffic engineers regarding the specification
of loop geometries. Most agencies have a set of
accepted designs, and many engineers have opinions
regarding the performance of various geometries and
experience with their performance. Obviously, the
standard designs work well for typical design vehicles
(passenger cars and light trucks), as these have been
widely used for many years. Problems with designs arise
from exceptional cases, particularly vehicles with
undercarriages that sit high above the pavement. It
was not known how well different geometries would
respond to vehicle bodies with varying amounts of
vertical clearance. This study investigates this question
and also provides numerous comparisons of the
sensitivity of alternative geometries.

4.3. Findings

The response of several loop detector geometries was
measured by directly recording the change in induc-
tance resulting from moving sheets of metal across a
loop at various lateral and longitudinal positions. An

image of the loop detector test bed is shown in
Figure 4.1, while a picture of a test in progress is
shown in Figure 4.2. The test apparatus was con-
structed of non-metal components and capable of
holding a sheet of metal at a fixed vertical position
above the pavement. During this study, both steel and
aluminum sheets were used to simulate the presence of
a vehicle.

The most visually interesting results from this study
are the three-dimensional plots of detector sensitivity,
shown in Figure 4.3 and Figure 4.4. The response of
various loop geometries to a galvanized steel sheet at 12
inches above the pavement are shown for a 20-ft
quadrupole loop (Figure 4.3a), a 20-ft rectangular loop
(Figure 4.3b), a 6-ft octagonal loop (Figure 4.4a), and a
6-ft round loop (Figure 4.4b). Figure 4.5 superimposes
the cross sections of these four plots in a single graph.

The results of the study agreed with the theory of
operation. Shorter vertical clearance and greater over-
lapping cross sectional area was found to increase loop
response. There was no difference between the response
from the aluminum and the steel sheets. With regard to
loop geometry, there was essentially no difference

Figure 4.1 Loop detector test bed

Figure 4.2 Test in progress
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between the round and octagonal loops. The results for
quadrupole loops were rather surprising. Quadrupole
loops were found to be less sensitive than rectangular
loops, which is contrary to the expectation that they
should have greater sensitivity because of the central
wire. Figure 4.6 conceptually illustrates the difference

between the anticipated response and the measured
response. Although quardupole loops offer the advan-
tage of providing greater sensitivity to vehicles such as
bicycles and motorcycles stopped in the center of a lane,
the tradeoff is that they have reduced sensitivity to
vehicles with greater vertical clearance.

Figure 4.3 Three-dimensional plots of inductance response to the galvanized steel sheet elevated 12 inches from the pavement.
Figure reproduced from Day et al. (17). (a) 20 ft quadrupole loop. (b) 20 ft rectangular loop
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4.4. Implementation of Findings

These findings are relevant to detector zone design,
or sensitivity settings, in situations where detection of
vehicles with large vertical clearance is a concern. One
example would be the detection of wooden horse-drawn
carriages, which are still common in certain regions of

the country. At lower sensitivity settings, quadrupole
loops in particular may not detect these types of
vehicles. Additionally, the findings of this study show
that none of the four loop geometries have any special
properties regarding sensitivity to adjacent lanes;
response from the ‘‘edge’’ regions of all four loops were
virtually identical.

Figure 4.4 Three-dimensional plots of inductance response to the galvanized steel sheet elevated 12 inches from the pavement.
Figure reproduced from Day et al. (17). (a) 6 ft 6 6 ft octagonal loop. (b) 6 ft round loop
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Figure 4.5 Comparison of loop response to galvanized steel at 12 inches above the pavement. Note that the 6 ft loop traces
represent the sensitivity of a single loop; multiple loops in series would have an overall lower sensitivity. Figure reproduced from
Day et al. (17)

Figure 4.6 Expected and actual performance of quadrupole loops (quadrupole loop sensitivity measured using 12-inch vertical
offset)
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CHAPTER 5. PRACTICAL METHODOLOGY FOR
TRAFFIC CONTROLLER PARAMETER

CONSISTENCY CHECKING

5.1. Objective

A typical traffic signal controller has over 135,000
parameters, of which approximately 74,000 are config-
urable (see rows 1 and 4 in Table 5.1). Perhaps
surprisingly, there is no existing resource for defining
the parameters that should be configured and assessed
for consistency, from either the industry on a national
scale or from any specific vendor. The objective of this
research effort was to leverage the NTCIP communica-
tion specification to systematically extract all para-
meters from a series of controllers along a corridor,
enumerate the parameters typically configured by
INDOT, and develop procedures for systematically
assessing the consistency (and valid ranges) of those
parameters.

5.2. Motivation

A typical traffic signal controller has over 74,000
configurable parameters. Indiana typically changes
about 3000 of those parameters to define communica-
tion channels, vehicle detector assignments, signal
phase timing, and time-of-day coordination patterns
(see row 10 in Table 5.1). These parameters can vary by
corridor depending on the facility characteristics (see
rows 13 and 16 in Table 5.1). Along a specific corridor,
approximately 300–500 parameters may need to be
adjusted for each intersection (Table 5.2 and
Table 5.3). Incorrect configuration of any single para-
meter can potentially cause significant problems,
particularly if one of these blunders occurs in a time-
of-day feature such that the problem is only observable
during a certain time of the day. An example of how a

potential problem that can be detected by comparing
parameters longitudinally between controllers on a
corridor is provided in Table 5.4. Here, we see that the
‘‘phaseRedClear’’ parameter is set for phases 9 through
16 for intersections 1–5, but not set for 6–22. Although
this particular example is unlikely to cause any
operational problems, it characterizes the types of
inconsistencies that can occur in the configuration of
controllers along a corridor. Some examples of incon-
sistencies that would cause operational problems would
include mismatched cycle lengths, time-of-day pattern
change times; errors in these parameters would prevent
signals from being effectively coordinated on a corri-
dor.

5.3. Findings

Tables of signal parameters were populated by
transferring each data element by walking the manage-
ment information base (MIB) tree defined by the
NTCIP protocol, including the base NTCIP tree as
well as the vendor-specific nodes. This was done by
systematically extracting each parameter by passing a
battery of SNMP ‘‘get’’ commands over an FTP
connection to a controller on the bench. This procedure
could also be used to obtain settings from a controller
in the field. To obtain parameters from 22 intersections
in a corridor, the controller databases were downloaded
as binary files, and then uploaded to the test controller.

This procedure is a scalable technique that INDOT
(and other agencies) can use to define their design space
for traffic signal timings and then systematically review
those parameters and define individuals or groups
within their organization that are responsible for the
configuration (rightmost columns in Table 5.2 and
Table 5.3, which would be assigned according to
agency policy). This design space is quite diverse,

TABLE 5.1
Distinct parameters for 22 intersections, 5 isolated and 17 coordinated

Row Parameter Types

Number of Distinct

Parameters MIB Groups

Standard or

Vendor-Specific

1 All Records 135,980 100.0% 1496 Both

2 All Records 103,296 76.0% 957 Vendor

3 All Records 32,684 24.0% 539 Standard

4 Readable/Writeable Parameters 74,773 55.0% 746 Both

5 Readable/Writeable Parameters 61,545 45.3% 541 Vendor

6 Readable/Writeable Parameters 13,228 9.7% 205 Standard

7 Operationally Important R/W 72,656 53.4% 509 Both

8 Operationally Important R/W 59,928 44.1% 375 Vendor

9 Operationally Important R/W 12,728 9.4% 134 Standard

10 Typical Indiana Parameter Changes 2,817 2.1% 129 Both

11 Typical Indiana Parameter Changes 1,968 1.4% 90 Vendor

12 Typical Indiana Parameter Changes 849 0.6% 39 Standard

13 Indiana Changes (5 Isolated Intersections) 398 0.3% 2 Both

14 Indiana Changes (5 Isolated Intersections) 0 0.0% 0 Vendor

15 Indiana Changes (5 Isolated Intersections) 398 0.3% 2 Standard

16 Indiana Changes (17 Coord Intersections) 1617 1.2% 83 Both

17 Indiana Changes (17 Coord Intersections) 1151 0.8% 59 Vendor

18 Indiana Changes (17 Coord Intersections) 466 0.3% 24 Standard
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TABLE 5.2
Vendor-specific (proprietary NTCIP node) parameter changes identified among 17 coordinated intersections in a single corridor

Parameter Name *Count Comment

Number of Changed

Parameters

Responsibility

for Defining*

asc3AddedInitialOption 256 4 Table(s) of 64 17

asc3ByDetType 64 64 Table(s) of 1 36

asc3CallOption 256 4 Table(s) of 64 75

asc3CNA2Phases 1 BINARY/TEXT 1

asc3crdForceOffAddInitial 1 BINARY/TEXT 1

asc3crdInterconnectSource 1 BINARY/TEXT 1

asc3crdUsePedTime 1 BINARY/TEXT 1

asc3DayPlanActionNumber 800 16 Table(s) of 50 9

asc3DetExtensionOption 256 4 Table(s) of 64 70

asc3DetPhaseLockDet 4 4 Table(s) of 1 1

asc3DetPhaseMaxRecall 4 4 Table(s) of 1 1

asc3DetPhaseVehRecall 4 4 Table(s) of 1 1

asc3FlashExitOverlapDelay 1 BINARY/TEXT 1

asc3MMUColorChkDisableGrn 16 16 Table(s) of 1 6

asc3MMUColorChkDisableRed 16 16 Table(s) of 1 2

asc3MMUColorChkDisableYel 16 16 Table(s) of 1 6

asc3MMUCompatibilityMode 1 BINARY/TEXT 1

asc3MMUCompatibilityState 160 160 Table(s) of 1 21

asc3MMUCompatibilityStatus 160 160 Table(s) of 1 21

asc3NtcipDualEntry 1 BINARY/TEXT 1

asc3NtcipPhaseEnable 1 BINARY/TEXT 1

asc3NtcipRing1Phase 255 15 Tables of 16, 1 of 15 4

asc3NtcipRing2Phase 255 15 Tables of 16, 1 of 15 8

asc3PassageOption 256 4 Table(s) of 64 70

asc3PhaseAddedInitial 64 4 Table(s) of 16 10

asc3PhaseMaximum1 64 4 Table(s) of 16 56

asc3PhaseMaximum2 64 4 Table(s) of 16 56

asc3PhaseMaximum3 64 4 Table(s) of 16 20

asc3PhaseMaximumInitial 64 4 Table(s) of 16 10

asc3PhaseMinimumGreen 64 4 Table(s) of 16 56

asc3PhaseOptions 64 4 Table(s) of 16 8

asc3PhasePassage 64 4 Table(s) of 16 56

asc3PhasePedestrianClear 64 4 Table(s) of 16 24

asc3PhaseRedClear 64 4 Table(s) of 16 56

asc3PhaseRedRevert 64 4 Table(s) of 16 50

asc3PhaseSimultaneousGapPhases 16 16 Table(s) of 1 2

asc3PhaseWalk 64 4 Table(s) of 16 24

asc3PhaseYellowChange 64 4 Table(s) of 16 56

asc3ptnActionPlan 120 120 Table(s) of 1 1

asc3ptnPhaseSplit 1920 120 Table(s) of 16 32

asc3ptnSequenceSelect 120 120 Table(s) of 1 5

asc3seqBarrierTypeSel 16 16 Table(s) of 1 5

asc3seqPhaseConcurrency 16 16 Table(s) of 1 16

asc3tbCtlSequence 36 36 Table(s) of 1 5

asc3tbDetLog 36 36 Table(s) of 1 5

asc3tbExceptDayPlan 36 36 Table(s) of 1 3

asc3tbExceptDOMOrDOW 36 36 Table(s) of 1 3

asc3tbExceptFormat 36 36 Table(s) of 1 1

asc3tbExceptMonth 36 36 Table(s) of 1 3

asc3tbExceptWOMOrYear 36 36 Table(s) of 1 2

asc3tbLPStatementSel 20000 100 Table(s) of 200 16

asc3tbResetTimeHour 1 BINARY/TEXT 1

asc3tbResetTimeMin 1 BINARY/TEXT 1

asc3unitWarningGrpDisableMap 1 BINARY/TEXT 1

asc3VehDetCallPhase 256 4 Table(s) of 64 34

asc3VehDetDelay 256 4 Table(s) of 64 16

asc3VehDetExtend 256 4 Table(s) of 64 11

asc3VehDetFailTime 256 4 Table(s) of 64 64

asc3VehDetOptions 256 4 Table(s) of 64 86

Sum of Parameter Counts 27361 Sum of Changes 1151

*to be determined by agency policy.

20 Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2011/08



covering both pattern-specific parameters such as cycle,
offset, and split; general signal parameters such as
yellow times; detector assignments; time-of-day sche-
dule settings; controller parameters such as commu-
nications settings; and specialized controller functions
such as preemption and priority.

The results shown in this chapter are based upon the
22 intersection US 30 corridor in Merrillville, Indiana,
but the techniques are based upon standard SNMP
messages that are vendor neutral, but comprehensively
include all vendor specific parameters. In the case study
analyzed, of the approximately 74,000 configurable
parameters, each intersection has approximately 2000
vendor specific parameters configured and 1000 NTCIP
1202 compliant parameters configured (see rows 11 and
12, Table 5.1). Obviously, these numbers will vary by
agency and the type of corridor, but this methodology
will be invaluable for precisely defining vendor and
contractor scopes of work in deploying modern traffic
signal systems as well as performing longitudinal
analysis to identify blunders and outliers in configured

controller parameters. An example of the types and
number of changes required for the 17 coordinated
intersections (which is part of the 22 intersection study
site) are shown in Figure 5.1 (standard NTCIP para-
meters) and Figure 5.2 (vendor-specific parameters).

5.4. Implementation of Findings

This research study directly led to creation of a
software utility to perform the automatic download of
settings using NTCIP. The methodology is being
integrated into INDOT’s signal systems management
program. The methodology’s primary use, maintaining
corridor-wide and agency-wide parameter consistency,
is highly relevant to this greater task by providing a tool
for verifying that implemented settings match design
settings. Furthermore, the tool would make it possible
in future to systematically store multiple vendor
controller parameters in a relational database, opening
the door to future tools that would make it easier for
system operators to check and alter parameters.

TABLE 5.3
Standard NTCIP 1202 parameter changes identified among 17 coordinated intersections in a single corridor

Parameter Name Counte Comment

Number of Changed

Parameters

Responsibility for

Defining*

channelControlSource 16 16 Table(s) of 1 4

channelControlType 16 16 Table(s) of 1 4

coordForceMode 1 BINARY/TEXT 1

dayPlanHour 800 16 Table(s) of 50 5

patternOffsetTime 120 120 Table(s) of 1 4

patternSequenceNumber 120 120 Table(s) of 1 5

phaseAddedInitial 16 16 Table(s) of 1 4

phaseMaximum1 16 16 Table(s) of 1 8

phaseMaximum2 16 16 Table(s) of 1 8

phaseMaximumInitial 16 16 Table(s) of 1 4

phaseMinimumGreen 16 16 Table(s) of 1 8

phaseOptions 16 16 Table(s) of 1 8

phasePassage 16 16 Table(s) of 1 8

phaseRedClear 16 16 Table(s) of 1 8

phaseRedRevert 16 16 Table(s) of 1 2

phaseYellowChange 16 16 Table(s) of 1 8

splitTime 1904 119 Table(s) of 16 32

timebaseAscPattern 100 100 Table(s) of 1 1

timeBaseScheduleDay 200 200 Table(s) of 1 199

vehicleDetectorCallPhase 64 64 Table(s) of 1 34

vehicleDetectorDelay 64 64 Table(s) of 1 16

vehicleDetectorExtend 64 64 Table(s) of 1 11

vehicleDetectorFailTime 64 64 Table(s) of 1 64

vehicleDetectorOptions 64 64 Table(s) of 1 20

Sum of Parameter Counts 3757 Sum of Changes 466

*to be determined by agency policy.
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Figure 5.1 Vendor-specific parameters adjusted for 17 coordinated intersections along US 30 in Merrillville, IN. (Data analysis
on May 11, 2011)
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